INDUSTRIAL MEMBRANES

Kynar® PVDF, when high performance matters
Kynar® PVDF is well established in the chemical processing industry for its excellent chemical resistance, mechanical strength, and long-term durability. These same qualities make this resin a great option for use in microfiltration and ultrafiltration membranes. Kynar® PVDF polymers are soluble in a variety of solvents, allowing them to be solvent-cast by the phase inversion process. Membranes made with Kynar® PVDF may be prepared as flat sheets, hollow fibers, and tubular configurations via the TIPS and NIPS processes.

Select Kynar® PVDF grades are USP Class VI compliant and listed in the federal register, NSF-51 and NSF-61, which allows the resins to be used in food contact and potable water applications. The outstanding chemical resistance of Kynar® resins allows a broad range of applications, including: potable water, high purity, and wastewater treatment. Medical applications include blood and protein filtration. Chemical filtration applications include food and beverage, biopharmaceutical, dairy, and paint.

**KYNAR® PVDF HIGHLIGHTS**

- 50+ year track record in PVDF production
- **Outstanding Chemical Resistance** i.e. ozone, chlorine, bromine, hydrogen peroxide, chlorine dioxide, acids
  - Homopolymer pH=1–12
  - Copolymers pH=1–13
- Grades available in a **wide viscosity range** for both flat sheet and hollow fiber membranes including both TIPS and NIPS processes
- Grades that produce highly durable **anti-fouling** membranes

**Select Kynar® PVDF grades used in membrane production are USP Class VI, NSF-51, and NSF-61 compliant**

- Grades available for **nanofiber** production and **nanofiber membranes**
- **Technical support teams** have the ability to prototype hollow fiber, reinforced hollow fiber, and flat sheet membranes
- Radiation resistant and can be **sterilized** via conventional methods including gamma, steam, and EtOH

**KYNAR® PVDF MEMBRANE APPLICATIONS**

- **Food & Beverage filtration**
- **Water filtration** (MF and UF pore size)
  - i.e. wastewater, viral rejection, ultrapure, deionized, potable water, membrane bio-reactors
- Chemical process filtration (i.e. paint)
- Biomedical blood and protein filtration
- Biopharmaceutical filtration
- Membrane distillation
- Separations i.e. liquid/liquid, liquid/gas, gas/gas
- Porous support for coating of specific separative layer(s) for gas/gas or liquid/gas separation
A GRADE FOR EVERY APPLICATION

A range of Kynar® PVDF grades are available to help customers tailor their membranes for specific applications and processing. The Kynar® 700 series is produced in a range of viscosities, permitting customers to select the optimum product for their membrane process. Kynar® MG 15 is a new grade designed specifically for hollow fiber spinning.

Kynar® HSV 900 is a very high viscosity grade especially suitable for hollow fiber casting and other applications requiring high gel strength. Kynar Flex® copolymer grades offer even higher pH chemical resistance and greater flexibility.

Kynar® resins are supplied in several forms: fine powder, granular, and pellets. Powders are often preferred for ease of dissolution, while our new granular, high bulk density, free flowing G1 50 allows for easier handling and solubility. See table below.

### TABLE 1
**SOLUTION VISCOSITY (25°C @ 10s⁻¹)**

<table>
<thead>
<tr>
<th>GRADE</th>
<th>Melt Visc (kp)</th>
<th>Solution Visc. 10% in DMAC (cps)</th>
<th>Solution Visc. 10% in NMP (cps)</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>741</td>
<td>16 - 19</td>
<td>100 - 200</td>
<td>200 - 350</td>
<td>Good for TIPS hollow fiber (HF)</td>
</tr>
<tr>
<td>761</td>
<td>26 - 29</td>
<td>225 - 350</td>
<td>500 - 800</td>
<td>Good for TIPS hollow fiber (HF)</td>
</tr>
<tr>
<td>761A</td>
<td>32 - 35</td>
<td>- 450 - 650</td>
<td>1000 - 1500</td>
<td>Sheet membranes and NIPS HF</td>
</tr>
<tr>
<td>MG 15/ G150</td>
<td>36 - 39</td>
<td>700 - 900</td>
<td>6000 - 2000</td>
<td>High strength NIPS HF*</td>
</tr>
<tr>
<td>HSV900/ G800</td>
<td>49 - 52</td>
<td>5000 - 7000</td>
<td>10000 - 15000</td>
<td>Low solids NIPS HF**</td>
</tr>
<tr>
<td>301F</td>
<td>27 - 30</td>
<td>450 - 550</td>
<td>800 - 1000</td>
<td>MF Membranes, supported fibers</td>
</tr>
<tr>
<td>2801</td>
<td>25 - 29</td>
<td>- 300 - 400</td>
<td>500 - 800</td>
<td>HFP Copolymer, Improved Caustic Resistance &amp; Flexibility</td>
</tr>
</tbody>
</table>

* Specifically designed for robust hollow fiber spinning and producing high strength membranes.  
** High viscosity grade that can be spun at low solids levels making it potentially attractive for membrane distillation.

### PHYSICAL, MECHANICAL, & THERMAL PROPERTIES

#### TABLE 2

<table>
<thead>
<tr>
<th>Physical Properties*</th>
<th>Units</th>
<th>Kynar® 700 Series</th>
<th>Kynar® MG Series</th>
<th>Kynar® HSV 900</th>
<th>Kynar® 301F</th>
<th>Kynar Flex® 2801</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity</td>
<td>g/cm³</td>
<td>1.77-1.79</td>
<td>1.75-1.77</td>
<td>1.76-1.79</td>
<td>1.76-1.79</td>
<td></td>
</tr>
<tr>
<td>Water Absorption %</td>
<td></td>
<td>0.01-0.03</td>
<td>0.02-0.04</td>
<td>0.03-0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>psi</td>
<td>240,000-335,000</td>
<td>200,000-260,000</td>
<td>70,000-120,000</td>
<td>72,000-125,000</td>
<td></td>
</tr>
<tr>
<td>Tensile Yield Elongation</td>
<td>%</td>
<td>5-10</td>
<td>10-15</td>
<td>10-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Yield Strength</td>
<td>psi</td>
<td>6,500-8,000</td>
<td>5,000-7,500</td>
<td>2,900-5,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Break Elongation</td>
<td>%</td>
<td>50-200</td>
<td>50-250</td>
<td>200-400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Break Strength</td>
<td>psi</td>
<td>5,000-8,000</td>
<td>4,500-7,000</td>
<td>2,500-5,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>psi</td>
<td>200,000-335,000</td>
<td>150,000-200,000</td>
<td>80,000-130,000</td>
<td>82,000-135,000</td>
<td></td>
</tr>
</tbody>
</table>

* Typical property values.  Should not be construed as sales specifications
Arkema, a leader in PVDF, is a global company with the resources to better serve our customers. Our experienced R&D staff and full analytical services provide us with the tools to prototype and test hollow fiber, reinforced fiber, and flat sheet membranes. Our team can provide initial formulations and process parameters for various grades of Kynar® PVDF to enable our customer’s development and speed to market.

- Model formulation
- Membrane spinning conditions
- On-site lab trials and training
- Field technical support
- Characterization
- Global support

CONTINUOUS INNOVATION

NIPS HOLLOW FIBER PILOT LINE

KYNAR® PVDF
- Higher strength membranes
- Durable anti-fouling
- Flex grades

CHLORINE AGING STUDY

NIPS CONCENTRIC HOLLOW FIBER
CHEMICAL RESISTANCE

PVDF CHEMICAL RESISTANCE

- Acids (1-6)
- Base (8-13)
- Oxidizers
- Alcohols
- Chloride hypochlorite
- Ozone

KYNAR® PVDF membranes
- Lower fouling
- Higher durability
- Longer life

LONGER LIFETIME & MORE FORGIVING
NEW KYNAR® PVDF – DURABLE/ANTIFOULING GRADES

KYNAR® PVDF

1,000,000 Cl⁻ ppm hours
>10 year lifetime

Less maintenance
Safer and more reliable
Kynar® resins have solubility properties suitable for easy processing by a variety of typical membrane forming processes. Table 3 lists active and latent solvents. Generally, Kynar® PVDF is not soluble in aliphatic hydrocarbons, aromatic hydrocarbons, chlorinated solvents, alcohols, acids, halogens, and basic solutions.

### TABLE 3

#### ACTIVE SOLVENTS

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Boiling Point °C</th>
<th>Flash Point °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethyl Acetamide a</td>
<td>166</td>
<td>70</td>
</tr>
<tr>
<td>N-Methyl-2-Pyrrolidone a</td>
<td>202</td>
<td>95</td>
</tr>
<tr>
<td>Dimethyl Formamide</td>
<td>153</td>
<td>67</td>
</tr>
<tr>
<td>Dimethyl Sulfoxidec (DMSO) b</td>
<td>189</td>
<td>88</td>
</tr>
<tr>
<td>Triethyl Phosphate</td>
<td>215</td>
<td>116</td>
</tr>
<tr>
<td>Tetramethyl Urea</td>
<td>177</td>
<td>1165</td>
</tr>
</tbody>
</table>

a Most commonly used solvents.
b DMSO is a product offered by Arkema
The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. Since the conditions and methods of use of the product and of the information referred to herein are beyond our control, ARKEMA expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information; NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE GOODS DESCRIBED OR THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be applicable when such product is used in combination with other materials or in any process. The user should thoroughly test any application before commercialization. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infringe any patent and the user is advised to take appropriate steps to be sure that any proposed use of the product will not result in patent infringement. See SDS for Health & Safety Considerations. Arkema has implemented a Medical Policy regarding the use of Arkema products in Medical Devices applications that are in contact with the body or circulating bodily fluids: (http://www.arkema.com/en/social-responsibility/responsible-product-management/medical-device-policy/index.html). Arkema has designated Medical grades to be used for such Medical Device applications. Products that have not been designated as Medical grades are not authorized by Arkema for use in Medical Device applications that are in contact with the body or circulating bodily fluids. In addition, Arkema strictly prohibits the use of any Arkema products in Medical Device applications that are implanted in the body or in contact with bodily fluids or tissues for greater than 30 days. The Arkema trademarks and the Arkema name shall not be used in conjunction with customers’ medical devices, including without limitation, permanent or temporary implantable devices, and customers shall not represent to anyone else, that Arkema allows, endorses or permits the use of Arkema products in such medical devices. It is the sole responsibility of the manufacturer of the medical device to determine the suitability (including biocompatibility) of all raw materials, products and components, including any medical grade Arkema products, in order to ensure that the end-use product is safe for its end use, performs or functions as intended, and complies with all applicable legal and regulatory requirements (FDA or other national drug agencies) It is the sole responsibility of the manufacturer of the medical device to conduct all necessary tests and inspections and to evaluate the medical device under actual end-use requirements and to adequately advise and warn purchasers, users, and/or learned intermediaries (such as physicians) of pertinent risks and full if any postmarket surveillance obligations. Any decision regarding the appropriateness of a particular Arkema material in a particular medical device should be based on the judgment of the manufacturer, seller, the competent authority, and the treating physician.

Kynar® and Kynar Flex® are registered trademarks of Arkema.

© 2020 Arkema Inc. All rights reserved.